Polynomials and General Degree-Based Topological Indices of Generalized Sierpinski Networks

نویسندگان
چکیده

منابع مشابه

M-polynomial and degree-based topological indices

Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

متن کامل

m-polynomial and degree-based topological indices

let $g$ be a graph and let $m_{ij}(g)$, $i,jge 1$, be the number of edges $uv$ of $g$ such that ${d_v(g), d_u(g)} = {i,j}$. the {em $m$-polynomial} of $g$ is introduced with $displaystyle{m(g;x,y) = sum_{ile j} m_{ij}(g)x^iy^j}$. it is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

متن کامل

On ev-degree and ve-degree topological indices

Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the evdegree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be used as possible tools in QSPR researches . In this paper we d...

متن کامل

M-Polynomial and Degree-Based Topological Indices

Let G be a graph and let mij(G), i, j ≥ 1, be the number of edges uv of G such that {dv(G), du(G)} = {i, j}. TheM -polynomial ofG is introduced withM(G;x, y) = ∑ i≤j mij(G)x y . It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular case to the single problem of determining the M -polyn...

متن کامل

Some Algebraic Polynomials and Topological Indices of Generalized Prism and Toroidal Polyhex Networks

Muhammad Ajmal 1, Waqas Nazeer 2, Mobeen Munir 2, Shin Min Kang 3,4 and Young Chel Kwun 5,* 1 Department of Mathematics, Government Muhammdan Anglo Orintal College, Lahore 54000, Pakistan; [email protected] 2 Division of Science and Technology, University of Education, Lahore 54000, Pakistan; [email protected] (W.N.); [email protected] (M.M.) 3 Department of Mathematics and Research In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complexity

سال: 2021

ISSN: 1099-0526,1076-2787

DOI: 10.1155/2021/6657298